人類骨小梁的非線性細(xì)觀有限元分析

2013-06-21  by:廣州有限元分析、培訓(xùn)中心-1CAE.COM  來源:仿真在線

ABAQUS 的主要功能和優(yōu)點(diǎn)

    建立模擬骨骼組織機(jī)械特性的本構(gòu)模型

    輕松求解幾何的和材料的非線性模型

    支持并行求解

    背景知識(shí)

    骨小梁位于長(zhǎng)骨(如股骨)的末端和立方骨(如脊骨)中,是人類骨骼中承載生物組織的主要生物組織。它的機(jī)械特性有很高的臨床價(jià)值和研究?jī)r(jià)值。增進(jìn)對(duì)骨小梁機(jī)械特性的了解,有助于深入研究骨骼的斷裂機(jī)理,也有助于評(píng)估年齡、疾病和藥物治療的影響。骨小梁是一個(gè)充滿孔洞的組織——脊骨中 85% 以上是孔洞,并有著復(fù)雜的結(jié)構(gòu),而且這兩者都因不同的人和不同的解剖部位而存在很大差異(參見圖 1)。因此,要用統(tǒng)計(jì)學(xué)的方法確定骨小梁的機(jī)械特性,就需要多個(gè)樣本的機(jī)械特性數(shù)據(jù)。

人類骨小梁的非線性細(xì)觀有限元分析+有限元項(xiàng)目服務(wù)資料圖圖片1

圖1 人類脊骨圓柱型小梁樣本的透視圖

    細(xì)觀有限元法 (μFE) 廣泛應(yīng)用于骨小梁機(jī)械特性的研究,包括在光譜水平和微結(jié)構(gòu)水平兩個(gè)方面的研究。這些模型是通過對(duì)骨小梁樣本進(jìn)行高分辨率成像得到的,樣本被自動(dòng)劃分成元素為六面體的有限元網(wǎng)格(參見圖 2)。網(wǎng)格中所有的單元都完全一樣,一般尺寸在 50 微米。劃分網(wǎng)格后,一個(gè)邊長(zhǎng) 5 毫米的立方體樣本的 μFE 模型一般具有 50 萬(wàn)個(gè)自由度。與試驗(yàn)用樣本(8 毫米直徑和 15 毫米長(zhǎng))類似的骨骼樣本的 μFE 模型則有幾百萬(wàn)個(gè)自由度。

converted PNM file

圖 2:含有 44μm 單元的骨骼樣本中一塊邊長(zhǎng)2.5 毫米立方體的 μFE 網(wǎng)格圖

    在過去,這些大量的問題會(huì)使許多研究人員不得不利用自定義代碼,一個(gè)單元一個(gè)單元地迭代求解。由于非線性有限元模型非常復(fù)雜,這些自定義代碼只限于線彈性分析。雖然線彈性有限元模型不能模擬骨骼受損情況,但是研究人員經(jīng)常利用它與試驗(yàn)數(shù)據(jù)校核,確定骨骼組織的彈性特性。然而,關(guān)于骨小梁非線性機(jī)械特性的許多問題還有待解決.因?yàn)?ABAQUS/Standard 能夠利用并行處理能力解決大型問題,包括復(fù)雜材料模型問題,所以它非常適合這類分析。在本技術(shù)簡(jiǎn)報(bào)中,我們利用 ABAQUS/Standard 研究了幾何非線性在骨小梁機(jī)械特性中的作用。我們對(duì)一個(gè)具有四百多萬(wàn)個(gè)自由度的模型進(jìn)行線彈性分析。通過檢驗(yàn)此分析的并行處理能力(也就是可伸縮性),我們展示了它求解大型問題的可行性。

    有限元分析方法

    利用顯微X線斷層攝影技術(shù) (μCT 20,Scanco Medical AG, Bassersdorf, Switzerland),以 22 微米的分辨率,對(duì)容積率為 9% 的人類脊椎骨小梁樣本進(jìn)行成像(參見圖 1)。建立了兩個(gè) μFE 模型。首先,整個(gè)圓柱形樣本被劃分為大小44 微米的六面體單元網(wǎng)格(參見圖2)。然后,從圓柱體中心劃出一個(gè)邊長(zhǎng)為5毫米的立體子區(qū),建立另一個(gè)具有相同單元大小的模型。兩個(gè)模型的網(wǎng)格數(shù)量見表 1。

表 1:μFE 模型的網(wǎng)格數(shù)量

模型

單元數(shù)量

節(jié)點(diǎn)數(shù)

自由度數(shù)

圓柱體

828,853

1,380,834

4,142,502

立方體

131,322

216,027

648,081

    圓柱體模型被用來評(píng)定直接稀疏求解器的并行處理能力。在沒有摩擦的情況下,在頂面和底面應(yīng)用位移邊界條件,模擬 1% 壓縮應(yīng)變。分別用 HP rx8620 計(jì)算機(jī)中 1、2和4 個(gè) CPU 進(jìn)行線彈性分析。

    利用邊長(zhǎng)為 5 毫米的立方體模型進(jìn)行非線性分析。這個(gè)尺寸的立方體已大得足夠確定平面特性,同時(shí)又小得足夠確保非線性分析的可行性。骨骼組織模型是用鑄鐵塑性材料制造的。鑄鐵塑性材料在受到拉伸和壓縮時(shí),其彈塑性狀態(tài)會(huì)有不同的屈服強(qiáng)度和硬化,因此會(huì)產(chǎn)生一個(gè)非對(duì)稱的單元?jiǎng)偠染仃?。因?需要使用非對(duì)稱存儲(chǔ)的并行稀疏直接求解器。樣本是一個(gè)彈性模量為 13.4Gpa,泊松比為 0.3 的組織。(參見參考文獻(xiàn) 2)根據(jù)人類股骨骨小梁組織的屈服應(yīng)變(參見參考文獻(xiàn) 3),鑄鐵塑性模型組織拉伸時(shí)的屈服應(yīng)力為 55.2MPa,壓縮時(shí)為 110.6MPa。在拉伸和壓縮時(shí),使用的是相當(dāng)于彈性模量 5% 的硬化斜度。在無(wú)摩擦的位移邊界條件下,拉伸和壓縮采用了 2% 的公稱應(yīng)變。在這樣低的公稱應(yīng)變條件下,骨骼微結(jié)構(gòu)的自力接觸可以忽略。此外,每個(gè)模型都進(jìn)行了考慮和不考慮幾何非線性變形的模擬。總共進(jìn)行了四個(gè)非線性分析,為了進(jìn)行比較,還計(jì)算了平面屈服應(yīng)變。所有對(duì)立方體的分析都是在一臺(tái) IBM Power4 計(jì)算機(jī)上進(jìn)行的,使用了兩個(gè)CPU。

結(jié)果和結(jié)論

    利用 4 個(gè) CPU 對(duì)圓柱體模型進(jìn)行線性分析,用時(shí)不到 16 分鐘,占用內(nèi)存不到 11 GB(參見表 2)。表 2 還包括了平行直接求解器的計(jì)數(shù)結(jié)果;加速因數(shù)是根據(jù)求解時(shí)間得到的。對(duì)具有幾何非線性的立方體 μFE 模型進(jìn)行非線性分析,用時(shí)不到 7.4 小時(shí),占用內(nèi)存 4.1 GB。每個(gè)非線性分析需要大約 100 個(gè)線性方程的解,這就強(qiáng)調(diào)了求解器可伸縮性的重要性。骨骼結(jié)構(gòu)中初始屈服點(diǎn)的定位使得非線性分析的收斂變得更加具有挑戰(zhàn)性(參見圖 3)。

表 2:6.4-3 版直接稀疏求解器性能

 CPU 數(shù) 求解時(shí)間(秒)   加速  總時(shí)間(秒)
 1  554 1.00  1348
 2  295 1.88  1107
 4  171 3.24  945 

converted PNM file
    圖 3:在 2% 壓縮應(yīng)變情況下邊長(zhǎng)為 2.5 毫米立方體的μFE 模型的骨骼結(jié)構(gòu)局部應(yīng)力分布圖

    圖 4 是根據(jù)表觀應(yīng)變(樣本長(zhǎng)度的變化/原始樣本長(zhǎng)度)作出的表觀應(yīng)力(外力/橫截面面積(25 平方毫米))圖。初始屈服點(diǎn)定義為偏移量達(dá)到 0.2% 的點(diǎn)。與試驗(yàn)數(shù)據(jù)(參見參考文獻(xiàn) 4)類似,壓縮時(shí)的屈服應(yīng)變比拉伸時(shí)的大。


表 3:不同模型組合的屈服應(yīng)變

 幾何非線性 拉伸   壓縮
 考慮   0.61   0.78
 不考慮  0.59 0.86 


 人類骨小梁的非線性細(xì)觀有限元分析+有限元項(xiàng)目服務(wù)資料圖圖片4

圖 4:四個(gè)非線性分析的應(yīng)力應(yīng)變關(guān)系圖幾何非線性在壓縮時(shí)引起軟化,拉伸時(shí)引起硬化標(biāo)記顯示由 0.2% 偏移量方法(點(diǎn)劃線)確定的初始屈服點(diǎn)

    雖然組織材料在硬化,但當(dāng)考慮幾何非線性時(shí),很明顯地觀察到有軟化發(fā)生(參見圖 4)。另外屈服應(yīng)變與試驗(yàn)測(cè)量結(jié)果類似,特別是壓縮的情況下(參見參考文獻(xiàn) 4)。這些結(jié)果表明在拉伸和壓縮時(shí)骨小梁組織有著不同的屈服特性,應(yīng)該把 μFE 模型和幾何非線性結(jié)合起來,精確地模擬骨小梁的平面屈服特性。

     致謝

    ABAQUS, Inc. 衷心感謝加州大學(xué)伯克利分校的 Tony M. Keaveny 教授提供骨骼樣本成像數(shù)據(jù)和有限元網(wǎng)格。

    參考文獻(xiàn)
van Rietbergen, B.; H. Weinans; R. Huiskes; A. Odgaard, “A New Method to Determine the Trabecular Bone Elastic Properties and Loading Using Micromechanical Finite Element Models,” Journal of Biomechanics, vol. 28, pp. 69–81, 1995.
Rho, J. Y.; T. Y. Tsui; G. M. Pharr, “Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation,” Biomaterials, vol. 18, pp. 1325–1330, 1997.
Bayraktar, H. H.; E. F. Morgan; G. L. Niebur; G. E. Morris; E.  K. Wong; T. M. Keaveny, “Comparison of the Elastic and Yield Properties of Human Femoral Trabecular and Cortical Bone Tissue,” Journal of Biomechanics, vol. 37, pp. 27–35, 2004.
Morgan, E. F.; and T. M. Keaveny, “Dependence of Yield Strain of Human Trabecular Bone on Anatomic Site,” Journal of Biomechanics, vol. 34, pp. 569–577, 2001.

    ABAQUS 參考資料
有關(guān)本簡(jiǎn)報(bào)中提到的 ABAQUS 功能的附加信息,請(qǐng)參見 ABAQUS V6.4 文檔中的以下內(nèi)容:
Analysis User’s Manual
“Static stress analysis”,第 6.2.2 節(jié)
“Parallel execution in ABAQUS/Standard”,第 7.18.1 節(jié)
“Cast iron plasticity”,第 11.2.10 節(jié)


開放分享:優(yōu)質(zhì)有限元技術(shù)文章,助你自學(xué)成才

相關(guān)標(biāo)簽搜索:人類骨小梁的非線性細(xì)觀有限元分析 Fluent、CFX流體分析 HFSS電磁分析 Ansys培訓(xùn) Abaqus培訓(xùn) Autoform培訓(xùn) 有限元培訓(xùn) Solidworks培訓(xùn) UG模具培訓(xùn) PROE培訓(xùn) 運(yùn)動(dòng)仿真 

編輯
在線報(bào)名:
  • 客服在線請(qǐng)直接聯(lián)系我們的客服,您也可以通過下面的方式進(jìn)行在線報(bào)名,我們會(huì)及時(shí)給您回復(fù)電話,謝謝!
驗(yàn)證碼

全國(guó)服務(wù)熱線

1358-032-9919

廣州公司:
廣州市環(huán)市中路306號(hào)金鷹大廈3800
電話:13580329919
          135-8032-9919
培訓(xùn)QQ咨詢:點(diǎn)擊咨詢 點(diǎn)擊咨詢
項(xiàng)目QQ咨詢:點(diǎn)擊咨詢
email:kf@1cae.com