CFD-FVM圈內(nèi)高被引SCI論文,Oh My Mama!

2017-02-24  by:CAE仿真在線  來(lái)源:互聯(lián)網(wǎng)

1. The numerical computation of turbulent flows


Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. Computer methods in applied mechanics and engineering, 1974, 3(2): 269-289.

Abstract: The paper reviews the problem of making numerical predictions of turbulent flow. It advocates that computational economy, range of applicability and physical realism are best served at present by turbulence models in which the magnitudes of two turbulence quantities, the turbulence kinetic energy k and its dissipation rate ?, are calculated from transport equations solved simultaneously with those governing the mean flow behaviour. The width of applicability of the model is demonstrated by reference to numerical computations of nine substantially different kinds of turbulent flow.

湍流在本質(zhì)上是三維的、依時(shí)的。湍流模型目前已經(jīng)完美到可謂個(gè)個(gè)都是藝術(shù)品。然而將湍流模型用于實(shí)際問(wèn)題還存在著很大的挑戰(zhàn)。20世紀(jì)70年代,受限于計(jì)算機(jī)的存儲(chǔ)限制,湍流模型還遠(yuǎn)遠(yuǎn)不能直接用于模擬。在21世紀(jì)的今天,雖然計(jì)算機(jī)能力驚人的增加,然而湍流模型的計(jì)算依然受限與計(jì)算機(jī)。1974年,k-epsilon湍流之父Launder and Spalding就非常具有遠(yuǎn)見(jiàn)的針對(duì)這一問(wèn)題,提出了k-epsilon模型的壁面函數(shù)法,大幅降低計(jì)算機(jī)使用資源,使得當(dāng)時(shí)的湍流模擬成為可能。


此篇文章目前被引用11585次

(湍流神秘y+之旅 | CFD中的壁面函數(shù)如何處理? | 邊界層網(wǎng)格)


2. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows


Patankar S V, Spalding D B. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows[J]. International journal of heat and mass transfer, 1972, 15(10): 1787-1806.

Abstract: A general, numerical, marching procedure is presented for the calculation of the transport processes in three-dimensional flows characterised by the presence of one coordinate in which physical influences are exerted in only one direction. Such flows give rise to parabolic differential equations and so can be called three-dimensional parabolic flows. The procedure can be regarded as a boundary-layer method, provided it is recognised that, unlike earlier published methods with this name, it takes full account of the cross-stream diffusion of momentum, etc., and of the pressure variation in the cross-stream plane. The pressure field is determined by: first calculating an intermediate velocity field based on an estimated pressure field; and then obtaining appropriate correction so as to satisfy the continuity equation. To illustrate the procedure, calculations are presented for the developing laminar flow and heat transfer in a square duct with a laterally-moving wall.

相信所有的CFDer,不論來(lái)自學(xué)術(shù)單位還是工程公司、科學(xué)家或工程師、碩士或博士,必然都聽(tīng)過(guò)SIMPLE算法。在SIMPLE算法之前,求解普適性NS方程的算法大多帶有各種非常嚴(yán)格的限制。1972年S.V. Patankar and D.B. Spalding首創(chuàng)Semi-Implicit Method for Pressure Linked Equations(SIMPLE)算法,提出錯(cuò)位網(wǎng)格的概念,使用有限差分方法求解動(dòng)量傳遞、熱量傳遞和質(zhì)量傳遞問(wèn)題,此英文論文隨后被相繼翻譯為法語(yǔ)、德語(yǔ)和俄語(yǔ)。在今天,幾乎所有的CFD求解器代碼上,都存在著SIMPLE算法的身影。


此篇巨著目前被引用5565次


3. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method


Ghia U, Ghia K N, Shin C T. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. Journal of computational physics, 1982, 48(3): 387-411.

Abstract: The vorticity-stream function formulation of the two-dimensional incompressible Navier-Stokes equations is used to study the effectiveness of the coupled strongly implicit multigrid (CSI-MG) method in the determination of high-Re fine-mesh flow solutions. The driven flow in a square cavity is used as the model problem. Solutions are obtained for configurations with Reynolds number as high as 10,000 and meshes consisting of as many as 257 × 257 points. For Re = 1000, the (129 × 129) grid solution required 1.5 minutes of CPU time on the AMDAHL 470 V/6 computer. Because of the appearance of one or more secondary vortices in the flow field, uniform mesh refinement was preferred to the use of one-dimensional grid-clustering coordinate transformations.

20世紀(jì)70年代是計(jì)算流體力學(xué)嶄露頭角,百花齊放的年代。上文中的壁面函數(shù)簡(jiǎn)化了湍流計(jì)算,SIMPLE算法使NS方程求解成為可能,那么Ghia et al. 1982年的這篇有關(guān)多重網(wǎng)格的文章則使得CFD的全部計(jì)算過(guò)程在大型計(jì)算機(jī)上得以求解。在此之前,人們不得不忍受很慢的迭代收斂速率,并且收斂速率和網(wǎng)格數(shù)量高度相關(guān)。收斂速率獨(dú)立于網(wǎng)格數(shù)量的多重網(wǎng)格法可謂一種CFD黑科技,其并不是Ghia et al. 發(fā)明,但是Ghia et al. 的這篇文章大力的推動(dòng)了多重網(wǎng)格法在CFD中的應(yīng)用。


此篇巨著目前被引用3651次

(CFD逆天黑科技:“多重網(wǎng)格法” | 什么是CFD中的"矩陣預(yù)條件"!)


4. Solution of the implicitly discretised fluid flow equations by operator-splitting


Issa R I. Solution of the implicitly discretised fluid flow equations by operator-splitting[J]. Journal of computational physics, 1986, 62(1): 40-65.

Abstract: A non-iterative method for handling the coupling of the implicitly discretised time-dependent fluid flow equations is described. The method is based on the use of pressure and velocity as dependent variables and is hence applicable to both the compressible and incompressible versions of the transport equations. The main feature of the technique is the splitting of the solution process into a series of steps whereby operations on pressure are decoupled from those on velocity at each step, with the split sets of equations being amenable to solution by standard techniques. At each time-step, the procedure yields solutions which approximate the exact solution of the difference equations. The accuracy of this splitting procedure is assessed for a linearised form of the discretised equations, and the analysis indicates that the solution yielded by it differs from the exact solution of the difference equations by terms proportional to the powers of the time-step size. By virtue of this, it is possible to dispense with iteration, thus resulting in an efficient implicit scheme while retaining simplicity of implementation relative to contemporary block simultaneous methods. This is verified in a companion paper which presents results of computations carried out using the method.

在1972年SIMPLE算法被提出之后,Issa在此篇文章中提出了著名的PISO算法。SIMPLE算法本身為一種迭代求解的CFD算法,在用于CFD瞬態(tài)計(jì)算的情況下較為耗費(fèi)資源。Issa在此篇文章中提出了非迭代的PISO算法,隨后PISO算法大肆被用于各種CFD代碼中。目前SIMPLE算法主要用于穩(wěn)態(tài)CFD計(jì)算,PISO算法主要用于瞬態(tài)CFD計(jì)算。


此篇文章目前被引用2998次


5. Numerical study of the turbulent flow past an airfoil with trailing edge separation


Rhie C M, Chow W L. Numerical study of the turbulent flow past an airfoil with trailing edge separation[J]. AIAA journal, 1983, 21(11): 1525-1532.

Abstract: A finite volume numerical method is presented for the solution of the two-dimensional incompressible, steady Navier-Stokes equations in general curvilinear coordinates. This method is appied to the turbulent flows over airfoils with and without trailing edge separation. The k-e model is utilized to describe the turbulent flow process. Body-fitted coordinates are generated for the computation. Instead of the staggered grid, an ordinary grid system is employed for the computation and a specific scheme is developed to suppress the pressure oscillations. The results of calculations are compared with the available experimental data.

由于CFD偏微分方程的特殊性,存在了著名的壓力-速度解耦的問(wèn)題。若處理不好,可能會(huì)出現(xiàn)棋格子壓力分布。在Rhie and Chow此篇文章之前,通常在有限體積法中采用錯(cuò)位網(wǎng)格的概念來(lái)防止棋格子壓力分布,然而錯(cuò)位網(wǎng)格編程復(fù)雜且對(duì)比較混亂的網(wǎng)格適應(yīng)性較差。Rhie and Chow在此篇文章中,提出一種新的非常簡(jiǎn)單的速度插值方法即可有效的處理棋格子壓力分布。相對(duì)于錯(cuò)位網(wǎng)格法,Rhie and Chow提出的速度差值方法得益于其易用性目前已經(jīng)被大量的用于CFD代碼中。


此篇文章目前被引用4344次

(CFD中的“參考?jí)毫Α?/strong> | CFD算法中的壓力方程 | 壓力|密度基求解器)


開(kāi)放分享:優(yōu)質(zhì)有限元技術(shù)文章,助你自學(xué)成才

相關(guān)標(biāo)簽搜索:CFD-FVM圈內(nèi)高被引SCI論文,Oh My Mama! CFD培訓(xùn) CFD流體分析培訓(xùn) cfd視頻 fluent cfx pumplinx軟件培訓(xùn) Fluent、CFX流體分析 HFSS電磁分析 Ansys培訓(xùn) Abaqus培訓(xùn) Autoform培訓(xùn) 有限元培訓(xùn) 

編輯
在線報(bào)名:
  • 客服在線請(qǐng)直接聯(lián)系我們的客服,您也可以通過(guò)下面的方式進(jìn)行在線報(bào)名,我們會(huì)及時(shí)給您回復(fù)電話,謝謝!
驗(yàn)證碼

全國(guó)服務(wù)熱線

1358-032-9919

廣州公司:
廣州市環(huán)市中路306號(hào)金鷹大廈3800
電話:13580329919
          135-8032-9919
培訓(xùn)QQ咨詢:點(diǎn)擊咨詢 點(diǎn)擊咨詢
項(xiàng)目QQ咨詢:點(diǎn)擊咨詢
email:kf@1cae.com