針對(duì)毫米波應(yīng)用的電路材料選擇【轉(zhuǎn)發(fā)】

2017-05-03  by:CAE仿真在線  來源:互聯(lián)網(wǎng)

對(duì)于通信設(shè)備或其他等一些應(yīng)用,毫米波頻段非常具有吸引力,因?yàn)閺?0GHz到300GHz范圍內(nèi)有非常寬的可用頻帶資源。但是尋找此頻段內(nèi)性能卓越且價(jià)格低廉的印刷電路板(PCB)材料是一個(gè)巨大挑戰(zhàn)。然而,通過對(duì)毫米波頻段PCB材料關(guān)鍵參數(shù)和特性的理解,如不同PCB材料對(duì)不同電路性能的影響等,找到適合于此頻段內(nèi)應(yīng)用的PCB材料是完全可能的。


當(dāng)進(jìn)行微波電路設(shè)計(jì)時(shí)需要考慮很多的影響因素,這些因素通常會(huì)使電路設(shè)計(jì)變得困難或者給電路帶來巨大的影響。這些因素包括抑制雜散模式傳輸、減小導(dǎo)體損耗和輻射損耗、實(shí)現(xiàn)有效的信號(hào)過渡,減小干擾諧振以及控制色散等。

針對(duì)毫米波應(yīng)用的電路材料選擇【轉(zhuǎn)發(fā)】HFSS仿真分析圖片1

圖1a.微帶傳輸線電路

針對(duì)毫米波應(yīng)用的電路材料選擇【轉(zhuǎn)發(fā)】HFSS仿真分析圖片2

圖1b.接地共面波導(dǎo)傳輸線

設(shè)計(jì)指導(dǎo)

有許多設(shè)計(jì)方法可以減小波傳輸中的一些問題,比如使用非常薄的電路基材。一般情況下,使用的層壓板厚度要小于電路最高工作頻率的四分之一波長(zhǎng)。然而實(shí)際應(yīng)用中,為了減小電路板中不同電路之間的耦合諧振干擾,使用的電路基材厚度最好低于電路最高工作頻率的八分之一波長(zhǎng)。不僅電路的相互耦合或諧振會(huì)干擾主信號(hào)的傳輸,其產(chǎn)生的表面波也會(huì)影響主信號(hào)的傳輸。信號(hào)導(dǎo)體的寬度和電路層壓板的厚度有關(guān),層壓板越薄,對(duì)應(yīng)的導(dǎo)體寬度應(yīng)越小。為了有效抑制雜散模式,導(dǎo)體寬度也應(yīng)該不超過電路最高工作頻率的八分之一波長(zhǎng)。

上述層壓板厚度和導(dǎo)體寬度設(shè)計(jì)方法可直接適用于高頻微帶線電路設(shè)計(jì),其他類型的電路設(shè)計(jì)還需考慮更多因素。對(duì)于接地共面波導(dǎo)(GCPW),又稱為金屬底板共面波導(dǎo)(CPCBW),在毫米波頻段越厚的電路層壓板表現(xiàn)出有利于抑制雜散模式傳輸。

如圖1a所示的微帶線結(jié)構(gòu),微帶傳輸線中的信號(hào)層和接地面之間存在一定的間隔(基材厚度)。如果該間隔為四分之一波長(zhǎng),兩個(gè)銅箔平面間會(huì)產(chǎn)生諧振并干擾主信號(hào)傳輸。如果基材厚度為四分之一波長(zhǎng)但銅導(dǎo)體寬度小于等于四分之一波長(zhǎng),諧振可能不會(huì)產(chǎn)生或者可以被忽略。如果基材厚度和銅導(dǎo)體寬度都大于等于四分之一波長(zhǎng),電路就很容易產(chǎn)生額外的諧振和雜散模式。圖1b所示是接地共面波導(dǎo)結(jié)構(gòu)。即使GCPW基材厚度和導(dǎo)體寬度等于四分之一波長(zhǎng),由于共面接地的緊耦合結(jié)構(gòu),電路雜散諧振可以避免。共面接地面與信號(hào)導(dǎo)體鄰近且通過電鍍通孔(PTHs)實(shí)現(xiàn)與底層地面相連。當(dāng)然,所有的高頻電路結(jié)構(gòu)的選擇都會(huì)存在各方面因素的權(quán)衡,如GCPW電路的導(dǎo)體損耗就比微帶線電路更高。然而,考慮到工作頻率,由于GCPW電路具有比微帶線電路更低的輻射損耗,因此總的插入損耗并不一定更高。

對(duì)于高頻傳輸線及高頻電路,插入損耗是諸多損耗成分的總和,包括介質(zhì)損耗、導(dǎo)體損耗、輻射損耗和泄露損耗等。高頻PCB材料一般具有較大的體電阻因此RF泄露損耗非常小。介質(zhì)損耗與電路材料的損耗因子或tanδ相關(guān)。損耗也受其他附加材料的影響,例如防焊油墨或粘結(jié)片。由于防焊油墨是一種高損耗材料,其損耗因子為0.02,通常在RF/微波頻段尤其是毫米波頻段不使用防焊油墨。此外,防焊油墨對(duì)介電常數(shù)(Dk)的影響過程難以控制,使用防焊油墨會(huì)導(dǎo)致阻抗失配,進(jìn)一步造成回波損耗和插入損耗的增加。

厚度變化

防焊油墨通常在不同電路之間甚至同一電路中存在厚度差異,這將導(dǎo)致電路無(wú)法預(yù)期的阻抗變化。而且防焊油墨通常具有高的吸水率,這會(huì)嚴(yán)重降低PCB電路的性能。水的介電常數(shù)Dk為70且具有比電路材料大得多的損耗因子,當(dāng)電路吸收一定量的水分后,電路材料的Dk將變大,電路的損耗也將上升。因此,在毫米波頻段盡量少用或者不用防焊油墨。

電路使用的基材越薄,特別是毫米波電路,導(dǎo)體損耗將變得越大,且隨著頻率升高導(dǎo)體損耗會(huì)顯著增加。通常在PCB基材加工過程中,會(huì)對(duì)銅箔表面進(jìn)行糙化處理以改善其和PCB介電材料的結(jié)合率。但粗糙的銅箔表面會(huì)導(dǎo)致更高的損耗。一般來說,當(dāng)電路工作頻率對(duì)應(yīng)的趨膚深度小于或等于銅箔的表面粗糙度時(shí),表面粗糙度的影響將變得非常顯著。在毫米波頻段,趨膚深度通常小于銅箔的表面粗糙度。

銅箔表面粗糙度具有多種測(cè)量方法和衡量單位。對(duì)于射頻/微波應(yīng)用,Rq或者均方根(RMS)測(cè)量是一種較為合適的粗糙度測(cè)量方法。表1a列出了高頻PCB材料中常用的不同種類的銅箔粗糙度。表1b表明,在毫米波頻段,趨膚深度甚至與最光滑的銅箔表面粗糙度相當(dāng)。

從表1的數(shù)據(jù)可知,小于50GHz應(yīng)用的電路設(shè)計(jì)者也許會(huì)覺得選用任何種類銅對(duì)電路的影響不大,因?yàn)樗秀~箔類型的表面粗糙度都大于趨膚深度。這個(gè)結(jié)論存在一定的錯(cuò)誤。因?yàn)樵酱植诘谋砻嫠a(chǎn)生的寄生電感將越大,且粗糙表面會(huì)導(dǎo)致表面阻抗的變化和增加插入損耗。圖2顯示的研究結(jié)果表明了銅箔粗糙度對(duì)傳播常數(shù)和插入損耗的影響。


銅箔表面粗糙度
RMS(微米)

壓延銅

0.3

低粗糙度電解銅

0.6

標(biāo)準(zhǔn)電解銅

1.2

高粗糙度電解銅

2.4

表1a.RF/微波電路中常用典型銅箔的表面粗糙度值

頻率(GHz)

信號(hào)在導(dǎo)體中的
趨膚深度(微米)

1

2.00

10

0.67

50

0.30

77

0.24

110

0.20

表1.b 不同頻率下信號(hào)趨膚深度

針對(duì)毫米波應(yīng)用的電路材料選擇【轉(zhuǎn)發(fā)】HFSS分析案例圖片3

圖2. 銅箔表面粗糙度對(duì)傳輸常數(shù)和插入損耗的影響示意圖

針對(duì)毫米波應(yīng)用的電路材料選擇【轉(zhuǎn)發(fā)】HFSS分析案例圖片4

圖3. 在相同材料上使用不同粗糙度銅箔的電路損耗對(duì)比

為了進(jìn)一步比較銅箔粗糙度的影響,圖3顯示了在相同的材料上使用不同種類銅箔的電路插入損耗對(duì)比。所使用的羅杰斯標(biāo)準(zhǔn)RO4350B?層壓板銅箔的平均粗糙度為2.5um RMS,而RO4350BLoPro?層壓板銅箔的平均粗糙度為0.6 um RMS。盡管50GHz時(shí)曲線結(jié)果存在一定的噪聲抖動(dòng),但是趨勢(shì)很明顯,越光滑的銅表面所對(duì)應(yīng)的插入損耗越低。當(dāng)然,兩個(gè)材料的介質(zhì)厚度存在細(xì)微差異(0.7 mils),但對(duì)于越薄的材料,導(dǎo)體損耗將占總損耗的主要部分。

電路最終的表面處理也會(huì)影響電路的導(dǎo)體損耗,尤其是在高頻頻段。通常,PCB表面處理中所用的許多金屬的導(dǎo)電性都比銅差,附加表面處理工藝會(huì)導(dǎo)致導(dǎo)體損耗的增加。例如PCB中最常使用的化學(xué)鎳金(ENIG)表面處理,由于鎳的導(dǎo)電性比銅差,使用ENIG表面處理將不可避免地造成導(dǎo)體損耗的增加。典型的ENIG表面處理的金屬導(dǎo)體疊層都是從材料的基銅開始,在銅上方沉積鎳以防止銅的氧化,最后在鎳的上方沉積金。從厚度上來看,金的生長(zhǎng)是自限制過程且厚度一般為0.2um左右,而鎳的厚度一般為5um左右??紤]到毫米波頻段的趨膚深度,電流會(huì)完全覆蓋鎳層以及部分金層。隨著頻率的升高,鍍金層也會(huì)完全被覆蓋。但由于金的導(dǎo)電性仍比銅差,因此使用ENIG表面處理最終會(huì)導(dǎo)致電路導(dǎo)體損耗的增加。

圖4顯示了相同電路基材上使用裸銅和使用ENIG對(duì)電路插入損耗的影響。圖4的結(jié)果解釋了很多問題。使用ENIG表面處理的電路插入損耗比裸銅結(jié)構(gòu)電路高。但在低頻段,兩種電路的插入損耗特性有所不同。這主要是因?yàn)殒噷虞^厚,低頻段電流因趨膚深度大部分分布在鎳金屬中,而在銅和金中的分布則很少。當(dāng)頻率上升到20GHz時(shí),由于趨膚深度效應(yīng),電流在金中開始分布。隨著頻率的進(jìn)一步上升,更多的金被使用,ENIG電路的插入損耗曲線變得和裸銅結(jié)構(gòu)的損耗曲線平行。

針對(duì)毫米波應(yīng)用的電路材料選擇【轉(zhuǎn)發(fā)】HFSS分析案例圖片5

圖4. 使用相同材料的裸銅結(jié)構(gòu)和ENIG表面處理微帶傳輸線插入損耗對(duì)比

純銀的電導(dǎo)率比純銅的電導(dǎo)率更高,在PCB表面處理工藝中使用沉沉銀工藝使用的實(shí)際上是銀合金而非純銀。該合金近似為純銀,在導(dǎo)電性上接近于銅。沉銀工藝是自限的,附加上的銀也是薄薄的一層,厚度一般為0.2um。與金相比,銀會(huì)被逐漸氧化而金不會(huì)。雖然銀的氧化會(huì)使表面顏色發(fā)生變化,但這種氧化對(duì)電路插入損耗幾乎沒有影響。本文作者對(duì)存放2.5年沉銀工藝發(fā)生氧化的電路的研究表明氧化未對(duì)電路插入損耗造成影響。值得說明的是圖4的測(cè)試中信號(hào)過渡的問題。圖4中的曲線數(shù)據(jù)是借助50GHz頻率上限的商用矢量網(wǎng)絡(luò)分析儀得到的。但由于信號(hào)的過渡問題導(dǎo)致35GHz以上存在噪聲,因此圖中的數(shù)據(jù)只測(cè)到35GHz,。如果使用更有效的信號(hào)過渡,在25GHz到50GHz甚至更高頻范圍內(nèi),圖4中的ENIG插入損耗曲線和裸銅插入損耗曲線應(yīng)該趨于平行。

如前所述,插入損耗有許多組成成分,了解這些成分對(duì)于毫米波電路的設(shè)計(jì)者是非常有幫助的。羅杰斯公司開發(fā)的MWI應(yīng)用軟件可以仿真插入損耗的各個(gè)組成成分,該程序可以從羅杰斯主頁(yè)(www.rogerscorp.com)上下載。該程序是基于Hammerstad和Jenson提出的微帶傳輸線阻抗和損耗特性描述方法。MWI軟件也能預(yù)測(cè)微帶線的輻射損耗,其計(jì)算基于Wadell的研究結(jié)果,測(cè)試表明軟件預(yù)測(cè)值具有很高的準(zhǔn)確度。

圖5展示了使用MWI-2010仿真得到的兩種不同厚度的電路的插入損耗及組成成分。在電路仿真模型中,導(dǎo)線的寬度保證傳輸線阻抗為50Ω,使用材料的Dk為3.66,銅厚為1 oz。如果忽略輻射損耗,介質(zhì)損耗和導(dǎo)體損耗的對(duì)比非常明顯。當(dāng)頻率低于15GHz時(shí),在薄的10 mils電路中,導(dǎo)體損耗是總插入損耗的主要組成部分。而厚的30 mils電路中介質(zhì)損耗高于導(dǎo)體損耗。在該頻率范圍內(nèi),電路設(shè)計(jì)者在銅箔(導(dǎo)體損耗)和損耗因子(介質(zhì)損耗)一定的情況下選擇材料需要考慮電路板的厚度。在圖5所示的頻率范圍內(nèi),對(duì)于30 mils的電路,15GHz時(shí)輻射損耗盡管已非常顯著,但不是插損的主要部分,

針對(duì)毫米波應(yīng)用的電路材料選擇【轉(zhuǎn)發(fā)】HFSS分析案例圖片6

圖5.不同厚度相同電路材料的微帶傳輸線插入損耗(總損耗)及各組成成分對(duì)比

輻射損耗

圖5表明輻射損耗取決于工作頻率和電路厚度。頻率在15GHz以下,10 mils電路的輻射損耗并不明顯忽略,而30 mils電路的輻射損耗非常顯著。因此一般來說,使用薄的電路基材厚度可以降低輻射損耗。當(dāng)頻率上升到毫米波頻段(大于30GHz)時(shí),相比于薄的電路,厚的電路的輻射損耗是總損耗的主要部分。

輻射損耗除了和PCB材料的厚度有關(guān),還和PCB材料的Dk值有關(guān)。電路材料的Dk值越大,電路的輻射損耗將越低,但這將給電路帶來更高的導(dǎo)體損耗。此外,電路材料的Dk值越大,實(shí)現(xiàn)相同的阻抗值時(shí)信號(hào)導(dǎo)體的寬度將越窄。而信號(hào)導(dǎo)體越窄對(duì)應(yīng)的導(dǎo)體損耗也將越高。

電路的設(shè)計(jì)也會(huì)影響輻射損耗,因?yàn)槿魏巫杩沟氖渫ǔ6紩?huì)伴隨一定的能量輻射。在射頻/微波電路中阻抗失配是很常見的,這和電路的具體設(shè)計(jì)密切相關(guān)。例如,帶狀線電路通常沒有輻射損耗,而如圖5中的微帶線電路則易于產(chǎn)生輻射損耗,其輻射的程度與電路厚度及其他因素有關(guān)。當(dāng)輻射損耗成為一個(gè)設(shè)計(jì)問題時(shí),使用GCPW電路可以有效降低輻射損耗。該結(jié)論在50GHzGCPW電路及其他電路最優(yōu)化信號(hào)過渡的研究中有詳細(xì)闡述。

在毫米波高頻頻段,信號(hào)接口的良好過渡是保證電路性能的一個(gè)重要因素。信號(hào)過渡和輻射損耗是相關(guān)的,因?yàn)橛行У男盘?hào)過渡能使信號(hào)能量從一個(gè)傳輸模式有效過渡到另一個(gè)傳輸模式,這將使輻射損耗減小。例如,典型的RF連接器的工作模式為橫電波模式(TE)而平面PCB的工作模式為橫電磁波(TEM)模式。GCPW和微帶線的工作模式為準(zhǔn)TEM模式,而帶狀線的工作模式為標(biāo)準(zhǔn)TEM模式。當(dāng)傳輸模式改變時(shí),例如連接器和電路板的連接,任何的寄生電抗或阻抗失配都將導(dǎo)致電路產(chǎn)生輻射損耗。

毫米波高頻電路的設(shè)計(jì)者應(yīng)該時(shí)常聯(lián)系高頻材料的供應(yīng)商以更好的理解不同高頻電路材料的綜合性能及適用于毫米波電路的不同PCB材料。許多電路基材可組合不同種類及不同粗糙度的銅以供使用。在單個(gè)產(chǎn)品系列中,從Dk和損耗因子角度來看,也存在許多不同的電路材料可供選用。高頻電路材料供應(yīng)商非常樂意同電路設(shè)計(jì)者緊密合作,一道實(shí)現(xiàn)對(duì)現(xiàn)有的和新型的微波/毫米波電路性能的優(yōu)化。

作者:羅杰斯公司先進(jìn)互連解決方案事業(yè)部市場(chǎng)技術(shù)經(jīng)理 John Coonrod

參考文獻(xiàn)

[1] Allen F. Horn, John W. Reynolds, and James C.Rautio, “Conductor Profile Effects on the PropagationConstant of Microstrip Transmission Lines,” IEEEMTT-S International Microwave Symposium, 2010.
[2] E. Hammerstad and O. Jenson, “Accurate modelsof microstrip computer aided design,” 1980 MTT-SInternational Microwave Symposium Digest, May 1980,pp. 407-409.
[3] Brian C. Wadell, “Transmission Line DesignHandbook,” Artech House, Norwood, MA, 1991, p. 99.
[4] Bill Rosas, “Optimizing Test Boards for 50 GHzEnd Launch Connectors: Grounded Coplanar Launchesand Through Lines on 30-mil RO4350B with Comparisonto Microstrip,” Southwest Microwave, Inc., Tempe, AZ,2007, www.southwestmicrowave.com.

(本文由英文翻譯而來,如出現(xiàn)差異,請(qǐng)以英文為準(zhǔn))


開放分享:優(yōu)質(zhì)有限元技術(shù)文章,助你自學(xué)成才

相關(guān)標(biāo)簽搜索:針對(duì)毫米波應(yīng)用的電路材料選擇【轉(zhuǎn)發(fā)】 HFSS電磁分析培訓(xùn) HFSS培訓(xùn)課程 HFSS技術(shù)教程 HFSS無(wú)線電仿真 HFSS電磁場(chǎng)仿真 HFSS學(xué)習(xí) HFSS視頻教程 天線基礎(chǔ)知識(shí) HFSS代做 天線代做 Fluent、CFX流體分析 HFSS電磁分析 

編輯
在線報(bào)名:
  • 客服在線請(qǐng)直接聯(lián)系我們的客服,您也可以通過下面的方式進(jìn)行在線報(bào)名,我們會(huì)及時(shí)給您回復(fù)電話,謝謝!
驗(yàn)證碼

全國(guó)服務(wù)熱線

1358-032-9919

廣州公司:
廣州市環(huán)市中路306號(hào)金鷹大廈3800
電話:13580329919
          135-8032-9919
培訓(xùn)QQ咨詢:點(diǎn)擊咨詢 點(diǎn)擊咨詢
項(xiàng)目QQ咨詢:點(diǎn)擊咨詢
email:kf@1cae.com